sketsalah grafik fungsi berikut ini y 2x2 9x
Sketsalahgrafik fungsi y=2x^2 + 9x - 15028720 murniati6 murniati6 25.03.2018 Matematika Sekolah Dasar terjawab • terverifikasi oleh ahli Situs ini menggunakan cookie berdasarkan kebijakan cookie . Kamu bisa menentukan kondisi menyimpan dan mengakses cookie di browser PERUSAHAAN Tentang kami
10sketsalah grafik fungsi berikut ini y=2x2 +9x Di dalam lingkaran yang berdiameter 20cm terdapat sebuah juring dengan besar sudutpusat 450. Luas juring tersebut adalah.
Jawabanpaling sesuai dengan pertanyaan Sketsalah grafik fungsi berikut y=2x^(2)+9x. Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Bagikan. Sketsalah grafik fungsi berikut y = 2 x 2 + 9 x y=2x^2+9x y = 2 x 2 + 9 x . Jawaban. Untuk menjawab soal ini, kita akan coba menentukan nilai
Sketsalahgrafik fungsi berikut ini. a. y=2x^(2)+9x
Sketsalahgrafik fungsi berikut a) 2x ^2 +9x - 17840132 dinda8679 dinda8679 24.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut a) 2x ^2 +9x b) y= 8x^2-16x+6 1 Lihat jawaban Adakah bokeo Iklan
Partnersuche Im Internet Vorteile Und Nachteile. MatematikaALJABAR Kelas 9 SMPFUNGSI KUADRATFungsi Kuadrat dengan Tabel, Grafik, dan PersamaanFungsi Kuadrat dengan Tabel, Grafik, dan PersamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0129Fungsi fx = 4x^2 - 5x + 8 memiliki bentuk sesuai dengan...0502Perhatikan gambar grafik berikut. A a > 0, b > 0, dan c...0303Perhatikan gambar! Persamaan grafik fungsi kuadrat pada g...0215Persamaan grafik parabola pada gambar di bawah adalah ....Teks videoDi sini ada pertanyaan. Buatlah sketsa grafik fungsi y = 2 x kuadrat + 9 x untuk menentukan sketsa grafik fungsinya kita terlebih dahulu titik potong sumbu x titik potong sumbu y dan titik puncaknya. Setelah itu kita hubungkan titik-titik tersebut maka akan terbentuk sebuah sketsa grafik fungsi maka untuk yang pertama kita cari titik potong terhadap sumbu x yaitu Y nya sama dengan nol maka persamaan nya menjadi 2 x kuadrat ditambah 9 x = 0 maka yang ruas kiri kita faktorkan menjadi X dikali dengan 2 x + 9 = 0, maka kita dapatkan x-nya = 0 atau 2 x min 9 = 02 X Y = Min 9 maka Xsama dengan min 9 per 2 Setelah itu kita cari titik potong sumbu y nya yaitu x nya sama dengan nol maka nilainya dapat kita cari 2 * 0 ^ 2 + 9 x 0 maka y = 0 Setelah itu kita cari sumbu simetri dan titik puncaknya dengan rumus X dan Y dimana x nya = min b per 2 a dari persamaan nya hanya = 2 dan b = 9 maka x nya disini menjadi Min 9 per 2 x 2 maka x y = Min 9 per 4 selanjutnya untuk = min b kuadrat min 4 AC 4A dengan disini hanya 2 b nya 9 dan C nya sama dengan nolkita dapatkan Min 9 kuadrat min 4 x 2 x 0 per 4 x 2 maka kita dapatkan y = Min 81 dikurangi 0 per 8 maka kita dapatkan y = 81 per 8 atau dapat kita Tuliskan Min 10,125 karena titik-titiknya sudah kita temukan maka di sini sumbu simetrinya adalah x = min 9 per 4 dan titik puncaknya yaitu x nya adalah Min 9 per 4 koma Min 81 per 8 maka kita akan membuat titik-titiknya dalam koordinatdi sini ada titik 0 di sini ada sumbu-x dan di sini ada sumbu y Kemudian untuk titik potong sumbu x nya adalah 0 dan negatif 9 per 2 atau negatif 4,5 kita buat titiknya di sini kemudian titik potong sumbu y nya adalah y = 0 dan sumbu simetrinya adalah negatif 2,25 lalu titik puncaknya adalah negatif 2,25 negatif 10,125 maka di sini adalah titik puncaknya maka jika kita hubungkan akan terbentuk grafik fungsi y = 2 x kuadrat + 9 x sebagai berikut pertanyaan berikutnya
sketsalah grafik fungsi berikut ini. a. y = 2x² + 9x Jawaban Soal diatas merupakan materi fungsi kuadrat. Ingat! Bentuk umum fungsi kuadrat y = f 𝑥 = a𝑥² + b𝑥+ c Bentuk umum persamaan kuadrat a𝑥²+b𝑥+c= 0 , a ≠ 0 Keterangan 𝑥 = variabel a = koefisien kuadrat dari 𝑥² b = koefisien liner dari 𝑥 c = konstanta Cara membuat grafik persamaan kuadrat adalah dengan mencari dua koordinat titik 1. Memotong sumbu 𝑥 Maka nilai y = 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai 𝑥. Diperoleh koordinat yang memotong sumbu 𝑥. 2. Memotong sumbu y Maka nilai 𝑥= 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai y. Diperoleh koordinat yang memotong sumbu y. 3. Menentukan sumbu simetri xp = – b/2a 4. Menentukan titik puncak dengan titik koordinat 5. Gambar grafik fungsi kuadrat Diketahui, Asumsikan Persamaan y = 2𝑥² + 9𝑥 Ditanyakan, Grafik garis persamaan Dijawab, 1. Titik potong dengan sumbu 𝑥 maka y = 0 y = 2𝑥² + 9𝑥 0 = 2𝑥² + 9𝑥 Cari faktor dari 2𝑥² + 9𝑥=0 2𝑥² + 9𝑥=0 𝑥 2𝑥+ 9=0 𝑥 = 0 atau 2𝑥 + 9 = 0 𝑥 = – 9/2 𝑥 = -4,5 Di dapatkan nilai 𝑥 = 0 atau 𝑥 = – 9 sehingga titiknya adalah 0,0 dan -4,5,0. 2. Titik potong dengan sumbu y maka 𝑥 = 0 y = 2𝑥² + 9𝑥 y = 20² + 90 y = 0 Didapatkan titik koordinat 0, 0 3. Menentukan sumbu simetri xp = – b/2a 2𝑥² + 9𝑥=0 maka a = 1, b = 9 dan c = 0 xp = -b/2a = – 9/ 22 = -9/4 = -2,25 4. Menentukan titik puncak dengan titik koordinat Subtitusi xp =-2,25 ke persamaan 2𝑥² + 9𝑥=0 yp= f -2,25 = 2𝑥² + 9𝑥 = 2- 2,25 ² + 9-2,25 = 2 5,0625 – 20,25 = 10,125 – 20,25 = – 10,125 Di dapatkan titik puncak xp, yp = -2,25, – 10,125 Gambar grafik di bawah ini
Halo, Roy H! Kakak bantu ya. Jawabannya Ada pada gambar di bawah. Pembahasan Langkah-langkah untuk menggambar grafik fungsi kuadrat y = fx = ax² + bx + c 1. Tentukan diskriminan D = b² − 4ac a. Jika D > 0, maka memotong sumbu-x di dua titik b. Jika D = 0, maka menyinggung sumbu-x di satu titik c. Jika D 0, maka fungsi terbuka ke atas dan memiliki nilai minimum b. Jika a 0, maka fungsi kuadrat tersebut memotong sumbu-x di dua titik 2. Sehingga titik potong terhadap sumbu-x, maka y=0 y=2x²+9x 0=2x²+9x difaktorkan 0=x2x+9 x=0 atau x=-9/2 →0,0 dan -9/2,0 3. Titik potong terhadap sumbu-y, jika x = 0 y=2x²+9x y=20²+90 y =0 → 0,0 4. Persamaan sumbu simetri yaitu x = −b/2a x = −b/2a x = −9/22 x = -9/4 5. Karena a > 0, maka memiliki nilai minimum y = -D/4a yaitu y = -D/4a y=-81/42 y=-81/8 6. Titik balik minimum −b/2a, -D/4a = -9/4, 81/8 7. Titik-titk yang lainnya x = −2 -> y=2x²+9x y=2-2²+9-2 y = 8 -18 y = -10 →−2,-10 x = -4 -> y=2x²+9x y=2-4²+9-4 y = 32 -36 y = -4 → -4,-4 8. dibuat parabola yang melalui titik-titik tersebut Jadi, gambar grafik fungsi kuadrat y=2x²+9x adalah
PembahasanIngat bahwa titik potong dengan sumbu y maka nilai x = 0 titik ekstrim − 2 a b ​ , − 4 a b 2 − 4 a c ​ Titik potong dengan sumbu y y = − 2 x 2 + 4 x − 6 y = − 2 0 2 + 4 0 − 6 y = − 6 Jadi titik potong dengan sumbu y berada pada titik 0 , − 6 . Titik ekstrim x e ​ ​ = = = = ​ − 2 a b ​ − 2 − 2 4 ​ − − 4 4 ​ 1 ​ y e ​ ​ = = = = = ​ − 4 a b 2 − 4 a c ​ − 4 − 2 4 2 − 4 − 2 − 6 ​ − − 8 16 − 48 ​ − − 8 − 32 ​ − 4 ​ Jadi titik ekstrimnya 1 , − 4 Dengan demikian, grafiknya dapat digambarkan sebagai berikutIngat bahwa titik potong dengan sumbu maka nilai titik ekstrim Titik potong dengan sumbu Jadi titik potong dengan sumbu berada pada titik . Titik ekstrim Jadi titik ekstrimnya Dengan demikian, grafiknya dapat digambarkan sebagai berikut
Halo Adella, jawaban untuk soal ini pada gambar di bawah ya. Soal diatas merupakan materi fungsi kuadrat. Ingat! Bentuk umum fungsi kuadrat y = f ¥ = a¥Â² + b¥+ c Bentuk umum persamaan kuadrat a¥Â²+b¥+c= 0 , a ≠0 Keterangan ¥ = variabel a = koefisien kuadrat dari ¥Â² b = koefisien liner dari ¥ c = konstanta Cara membuat grafik persamaan kuadrat adalah dengan mencari dua koordinat titik 1. Memotong sumbu ¥ Maka nilai y = 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai ¥. Diperoleh koordinat yang memotong sumbu ¥. 2. Memotong sumbu y Maka nilai ¥= 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai y. Diperoleh koordinat yang memotong sumbu y. 3. Menentukan sumbu simetri xp = – b/2a 4. Menentukan titik puncak dengan titik koordinat 5. Gambar grafik fungsi kuadrat Diketahui, Asumsikan Persamaan y = 2¥Â² + 9¥ Ditanyakan, Grafik garis persamaan Dijawab, 1. Titik potong dengan sumbu ¥ maka y = 0 y = 2¥Â² + 9¥ 0 = 2¥Â² + 9¥ Cari faktor dari 2¥Â² + 9¥=0 2¥Â² + 9¥=0 ¥ 2¥+ 9=0 ¥ = 0 atau 2¥ + 9 = 0 ¥ = - 9/2 ¥ = -4,5 Di dapatkan nilai ¥ = 0 atau ¥ = - 9 sehingga titiknya adalah 0,0 dan -4,5,0. 2. Titik potong dengan sumbu y maka ¥ = 0 y = 2¥Â² + 9¥ y = 20² + 90 y = 0 Didapatkan titik koordinat 0, 0 3. Menentukan sumbu simetri xp = – b/2a 2¥Â² + 9¥=0 maka a = 1, b = 9 dan c = 0 xp = -b/2a = - 9/ 22 = -9/4 = -2,25 4. Menentukan titik puncak dengan titik koordinat Subtitusi xp =-2,25 ke persamaan 2¥Â² + 9¥=0 yp= f -2,25 = 2¥Â² + 9¥ = 2- 2,25 ² + 9-2,25 = 2 5,0625 - 20,25 = 10,125 - 20,25 = - 10,125 Di dapatkan titik puncak xp, yp = -2,25, - 10,125 Gambar grafik di bawah ini Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu yaŸ˜Š
sketsalah grafik fungsi berikut ini y 2x2 9x